
International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 1
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Abstract—Traceability is the ability to
verify the history, location, or application
of an item by means of documented
recorded identification. Traceability
includes the capability and
implementation of keeping track of a
given set or type of information to a given
degree, or the ability to chronologically
interrelate uniquely identifiable entities
in a way that is verifiable. In Software
development, the term traceability or
Requirements Traceability refers to the
ability to link product requirements back
to stakeholders' rationales and forward to
corresponding design artifacts, code, and
test cases. Traceability systems are
constituted by univocal identification of
units/batches or lots of every product
components, information collection about
time and location for every batch
transfer/transformation, and a method to
relate this kind of data. Traceability
technique has been proposed based on
the four elements in order to manage
information on manufacture. The four
elements are physical lot integrity, which
determines the traceability resolution,
collection of tracing and process data,
product identification and process
linking, and reporting/system data
retrieval. Traceability is an attribute of
any artifact in a software system.
Traceability is referred as the potential
for traces to be set up and used.
“Requirement traceability (RT) is the
most common concept and seems to be
mentioned in most literature discussing
issues related to traceability of a software
system. Requirement traceability refers to
the ability to describe and follow the life
of a requirement in both a forwards and
backwards direction (i.e., from its origins,
through its development and
specification, to its subsequent
deployment and use, and through all

periods of on-going refinement and
iteration in any of these phases)”.
Requirements traceability is intended to
ensure continued alignment between
stakeholder requirements and various
outputs of the system development
process.Traceability architecture is
sometimes inaccurate and is less efficient.

The proposed method provides an
efficient way for requirement traceability
with better accuracy by using information
retrieval techniques like Boolean model,
which uses logic expressions,
Probabilistic model, which uses set theory
and sample space, Vector space model
which uses weights to represent queries,
Inference network model, which uses
nodes to connect the queries and
represents queries as concepts or terms.

Index Terms—Automated Traceability,
Information retrieval, Precision, Recall,
Requirement Traceability, Traceability
Links.

I INTRODUCTION

In the software development lifecycle,

SDLC, traceability primarily means the
traceability of requirements throughout
application development, ensuring that the
delivered software fulfills all requirements
and therefore prevent failures.

Traceability provides for a logical

connection between artifacts of the
software development process. In support
of change management tasks, traceability
delivers important information about the
possible consequences of a changing
requirement. For project management
tasks, traceability supports the control of a
project’s progress and provides a way to
demonstrate the realization of user
requirements. Traceability is essential for
numerous quality-oriented software

Requirement Traceability for Software Development Lifecycle
1Sharadha Murugappan, 2Dr. D. Prabha,

1PG Student, 2Associate Professor,
1, 2Department of Computer Science and Engineering,

Sri Krishna College of Engineering and Technology, Coimbatore

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 2
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

development practices such as these.
Though widely accepted as beneficial, the
costs associated with traceability can be
high, so the return on investment remains
debatable. Unless mandated, traceability is
rarely used throughout all development
stages, due firstly to the number of
artifacts or elements therein that often need
to be related to yield value, and due
secondly to the need to maintain these
relations each time a change occurs. Even
where the set of relations is minimal, the
maintenance of traceability demands
effort. While attention has been directed
toward approaches for establishing
traceability initially among artifacts, less
attention has been paid to ensuring this
traceability remains correct over time.
Traceability also indicates the ability to
establish a predecessor-successor
relationship between one work product and
another. Traceability helps to minimize
failures and helps to deliver the right
software on schedule that meets business
requirements. Requirements traceability is
critically important element within the
application development lifecycle assuring
successful product development if used to
best effect.

II REQUIREMENT TRACEABILITY

Requirements traceability is an

explicittracing of requirements to other
requirements, models, test requirements,
and other traceabilityitems such as design
and user documentation.According to
Domges and Pohl (1998)[4], “If
requirements traceability is notcustomized
it can lead to an unwieldy mass of
unstructured and unusable data that will
hardlyever be used”. Traceability in
Software Development LifeCycle (SDLC)
helps monitoring and controlling, proper
requirements definition, checking if
accepted requirements are broken down
into development and test tasks that refer
to each other, ensures that during
development, source code is reviewed
according to acceptance criteria, changes

at any time during the development
lifecycle are traced, collaboration is
ensured, and testing is performed and
released for deployment on-time.

Software industries managing the

requirements for a project must be able to
trace a requirement back to a need that is
an essential component of the proposed
project. By examining each need,
traceability enables identification of
missed requirements early on in the design
or implementation process. Requirements
traceability also allows spotting extra
requirements that are not really needed.
The achievement of traceability in
software Engineering has received more
attention and research efforts. The
traditional traceability methods contained
gripes, which include unnecessary
creation of trace artefacts, the focus on
upfront activities and comprehensive
documentation which meant that the
important task of writing code and
delivering executable product was delayed
and had a negative impact on production
performance; creating an illusion that real
work is being done while in fact time is
being wasted developing the trace matrix;
focusing on comprehensive documentation
rather than the real deliverable of working
software; creation of overhead to the
change process itself which actually makes
change more difficult to implement.

The maintenance of traceability relations

is a multi-step activity. As changes occur
to the artifacts of software development, it
is essential to appreciate both where and
how these artifacts play a role with respect
to the current traceability, along with an
understanding of the encompassing
development activity that can characterize
the nature of the change. It is then
necessary to understand the impact of the
development activity on the traceability
and to carry out those activities that can re-
establish the traceability, at least to the
prior levels. These core tasks demand
effective method and tool support. This

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 3
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

paper describes a novel approach for the
maintenance of requirements traceability
relations. The approach currently supports
development models expressed in
structural United Modeling Language
(UML) diagrams and converts part of the
manual effort necessary for traceability
maintenance into computational effort.
There are two important innovations with
the approach: first is the automatic
identification of development activities
with impact on existing traceability
relations (event-based development
activity recognition); and second is the use
of rules to describe development activities
and the necessary updates in an abstract
way (rule-based traceability maintenance).
The approach is (semi-) automated as,
depending on the nature of the change and
the status of the existing traceability, the
user may have to provide input to the
process.

Figure 1

III AUTOMATED TRACEABILITY

As a result of these problems, a

number of researchers have investigated
the use of automated traceability methods
using information retrieval methods such
as the vector space model, semantic
indexing, or probabilistic network models
to dynamically generate traces at runtime.
The effectiveness of automated traceability
is measured using the standard metrics of

recall and precision, where recall measures
the number of correct links that are
retrieved by the tool, and precision
measures the number of correct links out
of the total number of retrieved links.
Numerous experiments, conducted using
both experimental data sets as well as
industry and government data sources,
have consistently shown that when recall
levels of 90-95% are targeted precision of
10-35% is generally obtainable. This
means that automated traceability methods
require a human analyst to manually
evaluate the candidate links returned by
the tool and to filter out the incorrect ones.
Automated trace retrieval, while no silver-
bullet, is increasingly recognized by
industry as a potential traceability solution.
Prototype tools such as Poirot and
RETRO, are currently being used in
industrial pilot studies. The new Center of
Excellence in Traceability has been
established specifically to address these
issues.

Traceability of software artifacts is
considered as an important factor in
supporting various activities in the
development process of a software system.
In general, the objective of traceability is
to improve the quality of software systems.
More specifically, traceability information
can be used to support some activities such
as: the change impact analysis, software
maintenance and evolution, the reuse of
software artifacts by identifying and
comparing requirements of the new system
with those of the existing system.

Large-scale industrial projects
often comprise of thousands of software
development artifacts, for example:
requirements documents, design
documents, code, bug reports, test cases,
and etc. The goal of software traceability is
to discover relationships between these
artifacts to facilitate the efficient retrieval
of relevant information, which is necessary
for many software engineering tasks.
Traceability helps developers to control
and manage the development and
evolution of a software system. Ithas been

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 4
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

defined as the \ability to follow the life of
a requirement in both a forward and
backward direction"in order to understand
the origins of the requirement and also to
determine how a requirement has
beenrealized in downstream work products
such as design, code, and test cases .

IV IR TECHNIQUES

To build the sets of traceability

links, we use the VSM (from the algebraic
family of techniques) and JSM (from the
probabilistic family of techniques)
techniques. Vector Space Model and the
Jensen-Shannon model outperform other
IR techniques. In addition, these two
techniques do not depend on any
parameter. Thus, we use both JSM and
VSM to recover traceability links and
compare their results in isolation with
those of Trustrace. These techniques both
essentially use term-by-document
matrices. Consequently, we choose the
well-known TF=IDF measure for VSM
and the normalized term frequency
measure for JSM. These two measures and
IR techniques arestate-of-the-art IR
techniques.

Figure 2

A document based IR system
typically consists of three main
subsystems: documentrepresentation,
representation of users' requirements
(queries), and the algorithms used tomatch
user requirements (queries) with document
representations.

Figure 3

A document collection consists of
many documents containing information
about various subjects or topics of
interests. Document contents are
transformed into a document
representation (either manually or
automatically). Document representations
are done in a way such that matching these
with queries is easy. Another consideration
in document representation is that such a
representation should correctly reflect the
author's intention. The primary concern in
representation is how to select proper
index terms. Typically representation
proceeds by extracting keywords that are
considered as content identifiers and
organizing them into a given format.

Queries transform the user's information

need into a form that correctly represents
the user's underlying information
requirement and is suitable for the
matching process. Query formatting
depends on the underlying model of
retrieval used.

The user rates documents presented as
either relevant or non-relevant to his/her
information need. The basic problem
facing any IR system is how to retrieve
only the relevant documents for the user’ s
information requirements, while not

 Promising results have been achieved
using Information Retrieval (IR)
techniques in automated traceability for
traceability recovery. IR-based methods
propose a list of candidate traceability
links on the basis of the similarity between
the texts contained in the software
artefacts. IR methods provide a useful
support to the identification of traceability
links.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 5
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

retrieving non- relevant ones. Various
system performance criteria like precision
and recall have been used to gauge the
effectiveness of the system in meeting
users’ information requirements. Recall is
the ratio of the number of relevant
retrieved documents to the total number of
relevant documents available in the
document collection. Precision is defined
as the ratio of the number of relevant
retrieved documents to the total number of
retrieved documents. Relevance feedback
is typically used by the system to improve
document descriptions or queries ,with the
expectation that the overall performance of
the system will improve after such a
feedback.

4.1 LATENT SEMANTIC INDEXING

IR methods index the documents in

a document space as well as the queries by
extracting information about the
occurrences of terms within them. This
information is used to define similarity
measures between queries and documents.
In the case of traceability recovery, this
similarity measure is used to identify that a
traceability link might exist between two
artifacts, one of whichis used as query.

4.1.1 VECTOR SPACE MODEL

In the Vector Space Model (VSM),

documents and queries are represented as
vectors of terms that occur within
documents in a collection [Baeza-Yates
and Ribeiro-Neto 1999; Harman 1992].
Therefore, a document space in VSM is
described by am x n matrix, where m is the
number of terms, and n is the number of
documents in the collection. Often this
matrix is referred to as the term-by
document matrix. A generic entry ai, j of
this matrix denotes a measure of the
weight of the ith term in the jth document.
Different measures have been proposed for
this weight [Salton and Buckley 1988]. In
the simplest case, it is a boolean value,
either 1 if the ith term occurs in the jth

document, or 0 otherwise; in other cases,
more complex measures are constructed
based on the frequency of the terms in the
documents. In particular, these measures
apply both a local and global weightings to
increase/decrease the importance of terms
within or among documents. Specifically,
we can write:

ai, j = L(i, j) ·G(i)

where L(i, j) is the local weight of the ith
term in the jth document and G(i) is the
global weight of the ith term in the entire
document space. In general, the local
weight increases with the frequency of the
ith term in the jth document, while the
global weight decreases as much as the ith
term is spread across the documents of the
document space. Dumais [1991][12] has
conducted a comparative study among
different local and global weighting
functions within experiments with Latent
Semantic Indexing (LSI). The best results
have been achieved by scaling the term
frequency by a logarithmic factor for the
local weight and using the entropy of the
term within the document space for the
global weight:

Where tfi jis the frequency of the ith term
in the j th document and pi j is defined as:

We also use these two functions in our
implementation of LSI. An advantage of
using the entropy of a term to define its
global weight is the fact that it takes into
account the distribution of the term within
the document space. From a geometric
point of view, each document vector
(columns of the term by-document matrix)
represents a point in the m-space of the
terms. Therefore, the similarity between
two documents in this space is typically

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 6
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

measured by the cosine of the angle
between the corresponding vectors, which
increases as more terms are shared. In
general, two documents are considered
similar if their corresponding vectors point
in the same (general) direction.

Many traceability recovery
techniques use VSM as the base algorithm.
In VSM, documents are represented as
vector in the space of all the terms.
Different term weighting schemes can be
used to construct these vectors. We use the
standard TF/IDF weighting scheme: A
document is a vector of TF/IDF weights.
TF is often called the local weight. The
most frequent terms will have more weight
in TF, but this by itself does not mean that
they are important terms. The inverse
document frequency, IDF, of a term is
calculated to measure the global weight of
a terms and is computed as
IDF=log2(|D|/|d:tiƐd|). Then, TF/IDF is
defined as

(TF/IDF)i,j= ni,j/∑knk,j X log2(|D|/| d : ti Ɛ

d |),

where ni,j are the occurrences of a term ti
in document dj, ∑knk,j is the sum of the
occurrences of all the terms in document
dj, |D| is the total number of documents d
in the corpus, and |d: ti Ɛ d| is the number
of documents in which the term ti appears.
Once documents are represented as vectors
of terms in a VSM, traceability links are
created between every two documents with
their own similarity value depending on
each pair of documents, e.g., a requirement
and a class. The similarity between two
documents is measured by the positive
cosine of the angle between their
corresponding vectors (because the
similarity between two documents cannot
be negative). The ranked list of recovered
links and a similarity threshold are used to
divide links into a set of candidate links to
be manually verified.

The vector space model can best be
characterized by its attempt to rank

documents by the similarity between the
query and each document.In the Vector
Space Model(VSM), documents and query
are represent as a Vector and the angle
between the two vectors are computed
using the similarity cosine function.
Similarity Cosine function can be defined
as:

Documents and queries are represented as
vectors.

Vector Space Model have been introduce
term weight scheme known as if-idf
weighting. These weights have a term
frequency (tf) factor measuring the
frequency of occurrence of the terms in the
document or query texts and an inverse
document frequency (idf) factor measuring
the inverse of the number of documents
that contain a query or document term.

4.1.2 SINGULAR VALUE
DECOMPOSITION

A common criticism of VSM is that it does
not take into account relations between
terms. For instance, having “automobile”
in one document and “car” in another
document does not contribute to the
similarity measure between these two
documents. LSI was developed to
overcome the synonymy and polysemy
problems, which occur with the VSM
model. In LSI, the dependencies between
terms and between documents, in addition
to the associations between terms and
documents, are explicitly taken into
account. LSI assumes that there is some
underlying or “latent structure” in word
usage that is partially obscured by
variability in word choice, and uses
statistical techniques to estimate this latent
structure. For example, both “car” and

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 7
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

“automobile” are likely to co-occur in
different documents with related terms,
such as “motor,” “wheel,” etc. LSI exploits
information about co-occurrence of terms
(latent structure) to automatically discover
synonymy between different terms. LSI
defines a term-by-document matrix A as
well as VSM. Then it applies singular
value decomposition (SVD) [Cullum and
Willoughby, 1985] to decompose the term-
by-document matrix into the product of
three other matrices:

A = T0·S0·D0,

where T0 is the m×r matrix of the terms
containing the left singular vectors(rows of
the matrix), D0 is the r ×n matrix of the
documents containing the right singular
vectors (columns of the matrix), S0 is an r
×r diagonal matrix of singular values, and
r is the rank of A. T0 and D0 have
orthogonal columns, such that:

SVD can be viewed as a technique for
deriving a set of uncorrelated indexing
factors or concepts [Deerwester et al.
1990], whose number is given by the rank
r of the matrix A and whose relevance is
given by the singular values in the
matrixS0. Concepts “represent extracted
common meaning components of many
different words and documents”
[Deerwester et al. 1990]. In other words,
concepts are a way to cluster related terms
with respect to documents and related
documents with respect to terms. Each
term and document is represented by a
vector in the r-space of concepts, using
elements of the left or right singular
vectors. The product S0 ·D0 (T0 ·S0,
respectively) is a matrix whose columns
(rows, respectively) are the document
vectors (term vectors, respectively) in the
r-space of the concepts. The cosine of the
angle between two vectors in this space
represents the similarity of the two
documents (terms, respectively) with
respect to the concepts they share. In this
way, SVD captures the underlying

structure in the association of terms and
documents. Terms that occur in similar
documents, for example, will be near each
other in the r-space of concepts, even if
they never co-occur in the same document.
This also means that some documents that
do not share any word, but share similar
words may none the less be near in the r-
space. SVD allows a simple strategy for
optimal approximate fit using smaller
matrices [Deerwester et al. 1990]. If the
singular values in S0 are ordered by size,
the first k largest values may be kept and
the remaining smaller ones set to zero.
Since zeros were introduced into S0, the
representation can be simplified by
deleting the zero rows and columns of S0
to obtain a new diagonal matrix S, and
deleting the corresponding columns of T0
and rows of D0 to obtain T and D
respectively. The result is a reduced
model:

A ≈Ak= T ·S ·D,

where the matrix Ak is only approximately
equal to A and is of rank k <r. The
truncated SVD captures most of the
important underlying structure in the
association of terms and documents, yet at
the same time it removes the noise or
variability in word usage that plagues
word-based retrieval methods. Intuitively,
since the number of dimensions k is much
smaller than the number of unique terms
m, minor differences in terminology will
be ignored. The choice of k is critical:
ideally, we want a value of k that is large
enough to fit all the real structure in the
data, but small enough so that we do not
also fit the sampling error or unimportant
details. The proper way to make such a
choice is an open issue in the factor
analysis literature [Deerwester et al. 1990;
Dumais 1992]. In the application of LSI to
information retrieval, good performances
have been achieved using about 100
concepts on a document space of about
1,000 documents and a vocabulary of
about 6,000 terms [Deerwester et al.1990].

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 8
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

With much larger repositories (between
20,000 and 220,000 documents and
between 40,000 and 80,000 terms), good
results have been achieved using between
235 and 250 concepts [Dumais 1992].

4.2 JENSEN-SHANNON MODEL

JSM is driven by a probabilistic

approach and hypothesis testing technique.
JSM represents each document through a
probability distribution, i.e., a normalized
term-by-document matrix.

The probability distribution of a

document is

p = n(ω,d)/Td,

where n(ω,d) is the number of times a

word appears in a document d and Td is
the total number of words appearing in d.
The empirical distribution can be modified
to take into account the term’s global
weight, e.g., IDF. After considering the
global weight, each document distribution
must be normalized. Once the documents
are represented as probability distribution,
JSM computes the distance between two
documents’ probability distribution and
returns a ranked list of links. JSM ranks
target documents via the “distance” of
their probability distributions to that of the
source documents:

JSM(q,d) = H((pq+pd)/2)-

((H(pq)+H(pd))/2),

H(p) = ∑𝒉𝒉(𝒑𝒑(𝝎𝝎)),

𝒉𝒉(𝒙𝒙) = −𝒙𝒙𝒙𝒙𝒙𝒙𝒙𝒙𝒙𝒙,

Where H(p)is the entropy of the

probability distribution p, and pq and pd
are the probability distributions of the two
documents (a “query” and a “document”),
respectively. By definition, h(0) ≡ 0. We

compute the similarity between two
documents using 1 –JSM(q,d). The
similarity values are in [0,1].

Gerard Salton and his colleagues
suggested a model based on Luhn's
similarity criterion that has a stronger
theoretical motivation (Salton and McGill
1983). They considered the index
representations and the query as vectors
embedded in a high dimensional Euclidean
space, where each term is assigned a
separate dimension.

V IR-BASED ARTIFACT QUALITY

IMPROVEMENT

The similarity between software artifacts

has been previously used to assess
software quality. Lawrie propose an
approach implemented in the Quality
Assessment using Language Processing
(QALP) tool. The QALP tool leverages
identifiers and related comments to
characterize the quality of a program. We
share with Lawrie et al. the conjecture that
the textual similarity between related
software artifacts can positively contribute
to quality and comprehensibility. The
approach we propose aims at showing such
a similarity to the developer to induce
improvements in the quality of the source
code lexicon. Poshyvanyk and Marcus
propose an approach that uses traceability
links to assess and maintain the quality of
software documentation. The approach is
based on the observation that the quality of
the documentation should reflect the
source code structure. In other words,
elements of the documentation that link to
strongly coupled elements of the source
code should be related too. In particular,
they use LSI to establish relationships
between elements of the documentation
and source code coupling measures to
assess the strength of dependencies among
source code artifacts. De Lucia use LSI to
identify cases of low similarity between
artifacts previously traced by software
engineers. The lack of textual similarity
might be an indicator of low quality

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 9
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

between the traced artifacts, in terms of
poor text description in high-level artifacts,
or of meaningless identifiers or poor
comments in source code artifacts. These
approaches use textual similarity to
perform an offline quality assessment of
both source code and documentation, with
the objective of guiding a software quality
review process. We use the similarity
between source code and high-level
artifacts—continuously recomputed while
coding—to induce the developer to write
source code with better identifiers and
comments. Also, we propose the
suggestion of identifiers obtained by
extracting n-grams from high-level
artifacts. IR methods have also been used
to define new measures for source code
quality assessment. Patel propose a
cohesion metric, based on the vector space
model, which highlights properties shared
between members of a module. Such a
cohesion measure can be considered as a
measure of the information strength of a
module. Marcus and Poshyvanyk propose
a cohesion metric that exploits LSI to
estimate the overlap of semantic
information—computed as a textual
similarity—among methods of a class.
Conceptual Coupling of Classes (CoCCs)
metric captures the coupling among
classes based on semantic information
obtained from source code identifiers and
comments. They show through a case
study that the conceptual measure captures
new dimensions of coupling which are not
captured by existing coupling measures.
Etzkorn propose a new semantic metric for
object-oriented systems called the
Semantic Class Definition Entropy metric
(SCDE),which examines the
implementation domain content of a class
to measure its complexity. The proposed
metric allows us to measure other aspects
of a class complexity which cannot be
measured with existing structural metrics.

VI META MODEL FOR
REQUIREMENT TRACEABILITY

We present the reference models
resulting from our studies. We assume that
our traceability reference models will be
implemented in some trace repository
(manual or computerized). It is widely
accepted that such a repository will
comprise at least three layers:

• the meta model defining the
language in which traceability
models can be defined;

• a set of reference traceability
models which can be customized
within the scope defined by the
meta model; and

• a (possibly distributed) database of
actual traces, recorded under the
chosen models.

We adopt the convention that we denote
node metaclasses(e.g., STAKEHOLDER)
by small bold caps and their instances
(e.g., CUSTOMER) by non bold small
caps. Similarly, link metaclasses (e.g.,
TRACES-TO) are denoted by bold italics,
specific link types by standard italics
(e.g.,REFINES).The practitioners and
focus groups in Phase I of the main study
confirmed that the most essential aspects
of traceability can be captured in the very
simple meta model, shown in Fig. 1, which
thus provides the basic language primitives
for categorizing and describing traceability
models in more detail. Each entity and link
in the meta model can be specialized and
instantiated to create organization or
project specific traceability models. The
meta model can be used to represent the
following dimensions of traceability
information (cf. Table 4):
1. What information is represented
including salient attributes or
characteristics of the information? In the
model, OBJECTS represent the inputs
and outputs of the system development
process. Examples of various types of
OBJECTS include REQUIREMENTS,
ASSUMPTIONS, DESIGNS, SYSTEM
COMPONENTS, DECISIONS,
RATIONALE, ALTERNATIVES,
CRITICAL SUCCESS FACTORS, etc.
These represent the major conceptual

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 10
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

elements among which traceability is
maintained during the various life cycle
stages. OBJECTS are created by various
organizational tasks. Examples of tasks
include systems analysis and design
activities. This information can be
represented as an attribute of OBJECTS.
Traceability across various OBJECTS is
represented by the TRACES-TO links.
For example, a DEPENDS-ON link
between two objects (a REQUIREMENT
and an ASSUMPTION) can be
represented as a specialization of this
TRACES-TO link.
2. Who are the STAKEHOLDERS that
play different roles in the creation,
maintenance and use of various
OBJECTS and traceability links across
them? In the model, STAKEHOLDERS
represent the agents involved in the system
development and maintenance life cycle
activities. Examples of
STAKEHOLDERS include the project
managers, systems analysts, designer etc.
These STAKEHOLDERS act in different
ROLES or capacities in the establishment
and use of the various conceptual
OBJECTS and traceability links.
3. Where it is represented in terms of
sources that document traceability
information? All OBJECTS are
documented by SOURCES, which may be
physical media, such as documents or
intangible things, such as references to
people or undocumented policies and
procedures. Examples of SOURCES
include REQUIREMENT
SPECIFICATION DOCUMENTS,
MEETING MINUTES, DESIGN
DOCUMENTS, MEMORANDA,
TELEPHONE CALLS as well as
references to various STAKEHOLDERS
using their phone numbers, e-mail address
etc., STAKEHOLDERS manage the
SOURCES; i.e., they create, maintain, and
use them.
4. How this information is represented
both by formal and informal means and
how it relates to other components of
traceability?

The sources, as mentioned above, can be
physical or intangible. Further, they can be
represented at different levels of formality.
Some sources such as requirements
specifications may be text documents,
whereas others design documents may be
represented in multiple formats such as
graphics and text.
5. Why a certain conceptual OBJECT was
created, modified, or evolved?
The rationale behind the creation,
modification and evolution of various
conceptual OBJECTS can be represented
as a specialization of the meta-class
OBJECT. Then, it can be linked to the
conceptual object (using a specialization of
the traces-to link).More complex models
of rationale, which include issues,
alternatives and arguments supporting and
opposing them can also be represented as
specialization of the OBJECT-TRACES-
TO-OBJECT relationship in our model.
6. When this information was captured,
modified, and evolved?
Relevant temporal information about any
of the entities or links in our model can be
represented as their attributes. For
example, the frequency or the
time/duration at which a requirement or
design was created, reviewed, modified, or
justified by a specific rationale can be
represented with this scheme. The three
nodes of the meta model correspond
roughly to the three dimensions of
requirements engineering proposed by
Pohl in that they cover the aspects of
understanding (objects), agreement
(stakeholders), and physical representation
(sources). However, note that we are not
discussing the requirements process per se,
but the creation and usage of traces.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 11
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Figure 4

VII CONCLUSION

The literature showed that IR techniques

are useful to recover traceability links
between requirements and source code.
However, IR techniques lack accuracy
(precision and recall). In this paper, we
conjectured that: we could consider
heterogeneous sources of information to
discard/rerank the traceability links
provided by an IR technique to improve its
accuracy.

REFERENCES

[1] A.D. Lucia, M.D. Penta, and R.
Oliveto, “Improving Source CodeLexicon
via Traceability and Information
Retrieval,” IEEE Trans.Software Eng., vol.
37, no. 2, pp. 205-227, Mar. 2011.

[2] A. Marcus and J.I. Maletic,
“Recovering Documentation-to-Source-
Code Traceability Links Using Latent
Semantic Indexing,”Proc. 25th Int’l Conf.
Software Eng., pp. 125-135, 2003.

[3] A. Abadi, M. Nisenson, and Y.
Simionovici, “A TraceabilityTechnique for
Specifications,” Proc. 16th IEEE Int’l
Conf. ProgramComprehension, pp. 103-
112, June 2008.

[4] Domges, Ralf & Pohl, Klaus (1998,
December). Adapting traceability
environments toproject-specific
needs.Commun. ACM 41, 12, 54-62.

[5] D. Poshyvanyk, Y.-G. Gue´he´neuc, A.
Marcus, G. Antoniol, and V.Rajlich,
“Feature Location Using Probabilistic
Ranking of MethodsBased on Execution
Scenarios and Information Retrieval,”
IEEETrans. Software Eng., vol. 33, no. 6,
pp. 420-432, June 2007.

[6] Nasir Ali, Yann-Gae¨lGue´he´neuc,
and GiulianoAntoniol, “Trustrace: Mining
Software Repositoriesto Improve the
Accuracy ofRequirement Traceability
Links,” IEEE Trans. Software Eng., vol.
39, no. 5, may 2013.

[7] KhaledJaber, Bonita , and Chang Liu,
“A Study on the Effect of Traceability
Links inSoftware Maintenance,” IEEE
Access, October 2013.

[8] AkramRoshdi, and AkramRoohparvar,
“Information Retrieval Techniques and
Applications ,” International Journal of
Computer Networks and Communications
Securityvol. 3, no. 9, september 2015.

[9] A. De Lucia,“Recovering Traceability
Links in SoftwareArtifact Management
Systems usingInformation Retrieval
Methods,”ACM Transactions on Software
Engineering and Methodology, Vol. 16,
No. 4, Article 13, Sept. 2007.

[10] Baeza-Yates, R. Andribeiro-Neto,B.
1999. “Modern Information
Retrieval,”.addison-wesley, reading, MA.

[11] Salton, G. And Buckley, C. 1988.
“Term-Weighting Approaches In
Automatic Text
Retrieval,”.inf.process.manage. 24, 5,
513–523.

[12] Dumais, S. T. 1991. improving the
retrieval of information from external
sources. behav. res.meth. instrum.
comput.23, 229–236

IJSER

http://www.ijser.org/

	I INTRODUCTION

